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Abstract

Earlier studies of the seigniorage inflation model have found that
the high-inflation steady state is not stable under learning. We recon-
sider this issue and analyze the full set of solutions for the linearized
model. Our main focus is on stationary hyperinflationary paths near
the high-inflation steady state. These paths are shown to be stable un-
der least squares learning if agents can utilize contemporaneous data.
In an economy with a mixture of agents, some of whom only have
access to lagged data, stable hyperinflationary paths emerge only if
the proportion of agents with access to contemporaneous data is suf-
ficiently high.
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1 Introduction

The monetary inflation model, in which the demand for real balances depends
negatively on expected inflation and the government uses seigniorage to fund
in part its spending on goods, has two steady states and also perfect foresight
paths that converge to the high inflation steady state.1 These paths have oc-
casionally been used as a model of hyperinflation, see e.g. (Fischer 1984),
(Bruno 1989) and (Sargent and Wallace 1987). However, this approach re-
mains controversial for several reasons. First, the high inflation steady state
has “perverse” comparative static properties since an increase in seigniorage
leads to lower steady state inflation. Second, recent studies of stability under
learning of the high inflation steady state suggest that this steady state may
not be a plausible equilibrium.
(Marcet and Sargent 1989) and (Evans, Honkapohja, and Marimon 2001)

have shown that the high inflation steady state is unstable for various ver-
sion of least squares learning. (Adam 2003) has obtained the same result
for a sticky price version of the monetary inflation model with monopolistic
competition. (Arifovic 1995) has examined the model under genetic algo-
rithm learning and the economy appears always to converge to the steady
state with low, rather than high inflation. Experimental work by (Marimon
and Sunder 1993) also comes to the conclusion that the high inflation steady
state is not a plausible outcome in the monetary inflation model.
The instability result for the high inflation steady state under learning has

been derived under a particular assumption about the information sets that
agents are assumed to have. (Van Zandt and Lettau 2003) raise questions
about the timing and information sets in the context of learning steady states.
They show that, under what is often called constant gain learning, the high
inflation steady state in the Cagan model can be stable under learning with
specific informational assumptions.2 Under the more standard decreasing
gain learning the high inflation steady state is found to be stable only if
inflation is estimated by a regression of the price level on its lagged value
(without intercept) and the current price level is both included as part of the
information set and used to update current parameter estimates as well.

1The model is also called the Cagan model after (Cagan 1956).
2However, constant gain learning is most natural in nonstochastic models, since other-

wise convergence to rational expectations is precluded. In this paper we allow for intrinsic
random shocks and thus use “decreasing gain” algorithms, consistent with least squares
learning.

2



The theoretical learning stability results of both (Marcet and Sargent
1989) and (Van Zandt and Lettau 2003) are for nonstochastic models and
examine only the learnability of inflation steady states.3 However, because
the high inflation steady state is indeterminate, there exists a multiplicity of
solutions taking different forms. In stochastic models, near the high inflation
steady state the solutions include stochastically stationary first order autore-
gressive solutions driven by the fundamental shocks and also more general
solutions that depend on sunspots. The central goal of the current paper
is to assess the stability under least squares learning of the entire class of
rational expectations (RE) solutions.4 In doing so we pay careful attention
to the information sets of the agents.
The monetary inflation model, like that of (Duffy 1994), has the impor-

tant feature that the temporary equilibrium inflation rate in period t depends
on the private agents’ one-step ahead forecasts of inflation made in two suc-
cessive periods, t−1 and t. Except for some partial results in (Duffy 1994) and
(Adam 2003), the different types of rational expectations equilibria (REE)
in such “mixed dating models” have not been examined for stability under
least squares learning. We show that stationary AR(1) paths, as well asso-
ciated sunspot equilibria around an indeterminate steady state, such as the
high inflation steady state, are stable under learning when agents have ac-
cess to contemporaneous data of endogenous variables. However, this result
is sensitive to the information assumption. If the economy has sufficiently
many agents who base their forecasts only on lagged information, then the
results are changed and the equilibria just mentioned become unstable under
learning.
Although our main interest is theoretical, in the last section of the paper

we discuss the empirical implications of our stable hyperinflationary paths.
(Marcet and Nicolini 2003) review the stylized facts of hyperinflationary
episodes for Latin American countries and argue that, in particular, there
is a low correlation between seigniorage and inflation. To account for this,
they construct a model of recurrent hyperinflations based upon a low infla-
tion steady state that is stable under learning and occasional trajectories into
the unstable region near the high inflation steady state, followed by a policy
switch that stabilizes inflation back to low levels. Our finding of learnable

3(Evans, Honkapohja, and Marimon 2001) analyze learning of stochastic steady states.
4In a related but different model, (Duffy 1994) showed the possibility of expectationally

stable nonstochastic dynamic paths near an indeterminate steady state.
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paths near the high inflation steady state raises the question of whether the
correlation of seigniorage and inflation along these paths is consistent with
the stylized facts. We show that the correlation can take any value, depend-
ing on the specific solution within the class of stable hyperinflationary REE,
and that a dependence on sunspots reduces the magnitude of the correla-
tion. This suggests that extensions of this model do have potential as an
explanation for hyperinflationary episodes.

2 The hyperinflation model

Consider an overlapping generations economy where agents born after period
zero live for two periods. An agent of generation t ≥ 1 has a two-period
endowment of a unique perishable good (wt,0, wt,1) = (2ψ0, 2ψ1), ψ0 > ψ1 >
0, with preferences over consumption given by u(ct,0, ct,1) = ln(ct,0) + ln(ct,1)
where the second subscript indexes the periods in the agent’s life. The agent
of the initial generation only lives for one period, has preferences u(c0,1) =
ln c0,1, and is endowed with 2ψ1 units of the consumption good andM0 units
of fiat money, which is the only means of saving.5

Let Pt denote the money price of the consumption good in period t and
use mt =

Mt

Pt
to denote real money balances. Utility maximization by agents

then implies that real money demand of generation t is given by

md
t = ψ0 − ψ1E

∗
t xt+1 (1)

where xt+1 =
Pt+1
Pt

denotes the inflation factor from t to t + 1. Here E∗t xt+1
denotes expected inflation, which we do not restrict to be fully rational (we
will reserve Etxt+1 for rational expectations).6

Real money supply ms
t is given by

ms
t =

mt−1
xt

+ g + vt

where g is the mean value of real seigniorage, and vt is a stochastic seigniorage
term assumed to be white noise with small bounded support and zero mean.7

5This framework, which is standard, was used by (Evans, Honkapohja, and Marimon
2001) and (Marcet and Nicolini 2003).

6The money demand function (1) can also be viewed as a log-version of the (Cagan 1956)
demand function.

7More generally the monetary shock could be allowed to be a martingale difference
sequence with small bounded support.
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This formulation of the seigniorage equation is standard, see e.g. (Sargent
and Wallace 1987), and simply states that government purchases of goods
g + vt are financed by issuing fiat money. It would also be straightforward
to allow for a fixed amount of government purchases financed by lump-sum
taxes.
Market clearing in all periods implies that

xt =
ψ0 − ψ1E

∗
t−1xt

ψ0 − ψ1E
∗
t xt+1 − g − vt

. (2)

Provided
g < gmax =

³p
ψ0 −

p
ψ1

´2
,

there exist two noisy steady states, with different mean inflation rates x,
given by the quadratic

ψ1x
2 − (ψ1 + ψ0 − g)x+ ψ0 = 0. (3)

We denote the low inflation steady state by xl and the high inflation steady
state by xh. Throughout the paper we will assume that g < gmax so that
both steady states exist. As shown in Appendix A.1, the low inflation steady
state is locally unique, while there is a continuum of stationary REE in a
neighborhood of the high inflation steady state.
The model (2) can be linearized around either steady state, leading to a

reduced form that fits into a general mixed dating expectations model taking
the form

xt = α+ β1E
∗
t xt+1 + β0E

∗
t−1xt + ut, (4)

where ut is a positive scalar times vt. It is convenient to study learning within
the context of the linearized model (4), and this has the advantage that our
results can also be used to discuss related models with the same linearized
reduced form, e.g. the one of (Duffy 1994).
The linearization of the hyperinflation model is discussed in detail in

Appendix A.1. We here note that equation (2) implies β1 > 0 and β0 <
0 for the linearization at either steady state. Furthermore the coefficients
(α, β0, β1) at either steady state are functions of the parameters ω and ξ
only, where

ω =
ψ1
ψ0

and ξ =
g

gmax
.
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3 The mixed dating model

We start by determining the complete set of rational expectations equilibria
for model (4). These can be obtained as follows. In a rational expectations
equilibrium (REE) the forecast error

ηt = xt − Et−1xt

is a martingale difference sequence (MDS), which together with (4) implies
that

xt = α+ β1(xt+1 − ηt+1) + β0(xt − ηt) + ut.

Solving for xt+1 and lagging the equation by one period delivers

xt = −β−11 α+ β−11 (1− β0)xt−1 + ηt + β−11 β0ηt−1 − β−11 ut−1

One can decompose the arbitrary MDS ηt into a component that is correlated
with ut and an orthogonal sunspot η

0
t :

ηt = γ0ut + γ1η
0
t

The sunspot η0t is again a MDS. Moreover, since ηt is an arbitrary MDS, the
coefficients γ0 and γ1 are free to take on any values. This delivers the full
set of rational expectations solutions for the model:

xt = − α

β1
+
(1− β0)

β1
xt−1 + γ0ut +

(β0γ0 − 1)
β1

ut−1 + γ1η
0
t +

β0γ1
β1

η0t−1 (5)

Since γ0 and γ1 are arbitrary there is a continuum of ARMA(1,1) sunspot
equilibria.
For γ0 = 1 and γ1 = 0 we obtain the stochastic steady state solution

xt = α(1− β1 − β0)
−1 + ut, (6)

while setting γ0 = β−10 and γ1 = 0 yields an AR(1) solution

xt = −β−11 α+ β−11 (1− β0)xt−1 + β−10 ut (7)

A third special case of interest arises when γ1 = 0 but γ0 6= β−10 yielding

xt = − α

β1
+
(1− β0)

β1
xt−1 + γ0ut +

(β0γ0 − 1)
β1

ut−1, (8)
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which is a continuum of ARMA(1,1) equilibria that does not depend on extra-
neous sunspots. One might call the solutions (8) “intrinsic nonfundamental
equilibria” since they are driven only by intrinsic random shocks but are
nonfundamental in the sense that they do not depend on a minimal number
of state variables.8

For the hyperinflation model, stability of steady state solutions (6) has
been studied in (Marcet and Sargent 1989), (Evans, Honkapohja, andMarimon
2001) and (Van Zandt and Lettau 2003). In the current paper, we examine
stability under learning of the full set of ARMA(1,1) solutions (5). As shown
in Appendix A.1, the ARMA(1,1) solutions near the high inflation steady
state are stationary, since 0 < β−11 (1 − β0) < 1 for the linearization at
xh. We demonstrate that these solutions are stable under learning when all
agents have full current information. These stability results apply also to
the solution special cases (7) and (8). We additionally examine how stabil-
ity is affected by the information sets of the agents, and in particular by
the possibility that a proportion of agents do not have access to full current
information. Our focus is thus on the stability under learning of the station-
ary solutions, near the high inflation steady state, other than the stochastic
steady state itself, and on the robustness of stability to the presence of a
mixture of agents with differing information sets.

4 Learning with full current information

We first consider the situation where agents have information about all vari-
ables up to time t and wish to learn the parameters of the rational expecta-
tions solution (5). As is well-known, the conditions for local stability under
least squares learning are given by expectational stability (E-stability) con-
ditions. Therefore, we first discuss the E-stability conditions for the REE,
after which we take up real time learning.

4.1 E-stability

Agents’ perceived law of motion (PLM) of the state variable xt is given by

xt = a+ bxt−1 + cut−1 + dη0t−1 + ζt (9)

8This is in contrast to the “minimal state variable” (MSV) solution (6). See (McCallum
1983) for a discussion of MSV solutions.
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where the parameters (a, b, c, d) are not known to the agent but are estimated
by least-squares, and ζt represents unforecastable noise.
Substituting the expectations generated by the PLM (9) into the model

(4) delivers the actual law of motion (ALM) for the state variable xt:

xt = (1− β1b)
−1 [α+ (β1 + β0)a] (10)

+ (1− β1b)
−1 £β0bxt−1 + (1 + β1c)ut + β0cut−1 + β1dη

0
t + β0dη

0
t−1
¤

The map from the parameters in the PLM to the corresponding parameters
in the ALM, the T-map in short, is given by

a→ α+ (β1 + β0)a

1− β1b
, b→ β0b

1− β1b

c→ β0c

1− β1b
, d→ β0d

1− β1b

Since the variables entering the ALM also show up in the PLM, the fixed
points of the T-map are rational expectations equilibria. Furthermore, as is
easy to verify, all REE’s are also fixed points of the T-map.
Local stability of a REE under least squares learning of the parameters

in (9) is determined by the stability of the differential equation

d(a, b, c, d)

dτ
= T (a, b, c, d)− (a, b, c, d) (11)

at the REE. This is known as the E-stability differential equation, and the
connection to least squares learning is discussed more generally and at length
in (Evans and Honkapohja 2001). If an REE is locally asymptotically stable
under (11) then the REE is said to be “expectationally stable” or “E-stable.”
Equation (11) is stable if and only if the eigenvalues of

DT =

⎛⎜⎜⎜⎜⎝
β1+β0
1−β1b

−(α+(β1+β0)a)β1
(1−β1b)2

0 0

0 β0
(1−β1b)2

0 0

0 − β1β0c

(1−β1b)2
β0

1−β1b 0

0 − β1β0d

(1−β1b)2
0 β0

1−β1b

⎞⎟⎟⎟⎟⎠ (12)

have real parts smaller than 1 at the REE. At the REE we have

a = −β−11 α (13)

b = β−11 (1− β0) (14)

c, d : arbitrary
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and the eigenvalues of DT are given by:

λ1 = 1 +
β1
β0
; λ2 =

1

β0
; λ3 = 1; λ4 = 1

The eigenvectors corresponding to the last two eigenvalues are those pointing
into the direction of c and d, respectively. As one would expect, stability in
the point-wise sense cannot hold for these parameters and in contexts such as
these, E-stability is defined relative to the whole class of ARMA equilibria. A
class of REE is then said to be E-stable if the dynamics under (11) converge
to some member of the class from all initial points sufficiently near the class.
We can then summarize the preceding analysis:

Proposition 1 If β1 > 0 and β0 < 0 or if β1 < 0 and β0 > 1 the set of
ARMA(1,1)-REE is E-stable.

It is easily seen that when the conditions of Proposition 1 hold, the solution
special cases (7) and (8) are also E-stable under their corresponding PLMs.
Figure 1 illustrates these conditions in the (β0, β1)-space. The light grey

region indicates parameter values for which the ARMA equilibria are E-stable
but explosive. If β1 and β0 lies in the black region, then the ARMA equilibria
are both E-stable and stochastically stationary.

FIGURE 1 HERE

Since β1 > 0 and β0 < 0 for the high steady state in the hyperinflation
model, Proposition 1 implies that the set of stationary ARMA(1,1)-REE is
E-stable.
We note that Proposition 1 applies to any model with reduced form (4).

In particular, in the model of (Duffy 1994) we have −β1 = β0 > 1, and
thus this proposition confirms his E-stability result for the stationary AR(1)
solutions and, more generally, proves E-stability for stationary ARMA(1,1)
sunspot solutions.
Since steady states are also fixed points of the T-map, the preceding E-

stability analysis can be applied to these REE. Note that this allows for
PLMs that are “overparameterized” relative to the steady state REE. We
have:

Remark: A steady state (α(1− β1 − β0)
−1, 0, 0, 0) is E-stable when agents

use the PLM (9) if β0 < 1 and β0 + β1 < 1.
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4.2 Real time learning

Next we consider real time learning of the set of ARMA equilibria (5). This
section shows that stochastic approximation theory can be applied to show
convergence of least squares learning when the PLM of the agents has an
AR(1) form and the economy can converge to the AR(1) equilibrium (7).
For technical reasons the stochastic approximation tools cannot be applied
for the continuum of ARMA(1,1)-REE. Therefore, real time learning of the
class (5) REE will be considered in section 6.3 using simulations.
Assume first that agents have the PLM of AR(1) form, i.e.

xt = a+ bxt−1 + ζt. (15)

The parameters a and b are updated using recursive least squares using data
through period t, so that the forecasts are given by

E∗t xt+1 = at + btxt,

E∗t−1xt = at−1 + bt−1xt−1.

Substituting these forecasts into (4) yields the ALM

xt =
α+ β0at−1 + β1at

1− β1bt
+

β0bt−1
1− β1bt

xt−1 +
1

1− β1bt
ut. (16)

Parameter updating is done using recursive least squares i.e.µ
at
bt

¶
=

µ
at−1
bt−1

¶
+ ϑtR

−1
t (xt−1 − at−1 − bt−1xt−2)

µ
1

xt−2

¶
, (17)

where Rt is the matrix of second moments, which will be explicitly specified
in the Appendix, and ϑt is the gain sequence, which is a decreasing sequence
such as t−1.9 In Appendix A.2 we prove the following result:

Proposition 2 The AR(1) equilibrium of model (4) is stable under least
squares learning (17) if the model parameters satisfy the E-stability conditions
given in Proposition 1.

Since E-stability governs the stability of the AR(1) solution under least
squares learning, the stationary AR(1) solutions in the hyperinflation model
are learnable. The same result holds for the AR(1) solution in a stochastic
version of the model of (Duffy 1994).

9See Chapter 2 of (Evans and Honkapohja 2001) for the recursive formulation of least
squares estimation.
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5 Learning without observing current states

The observability of current states, as assumed in the previous section, in-
troduces a simultaneity between expectations and current outcomes. Tech-
nically this is reflected in xt appearing on both sides of the equation when
substituting the PLM (9) into the model (4). To obtain the ALM one first
has to solve this equation for xt. Although this is straightforward mathe-
matically, it is not clear what economic mechanism would ensure consistency
between xt and the expectations based on xt. Moreover, in the non-linear
formulation there may even exist multiple mutually consistent price and price
expectations pairs, as pointed out in (Adam 2003).
To study the role of the precise information assumption, we introduce a

fraction of agents who cannot observe the current state xt. Such agents in
effect must learn to make forecasts that are consistent with current outcomes,
which allows us to consider the robustness of the preceding results. Thus
suppose that a share λ of agents has information set

H 0
t = σ(ut, ut−1, . . . , η0t, η

0
t−1, . . . , xt−1, xt−2 . . .)

and cannot observe the current state xt. Let the remaining agents have the
“full t”-information set

Ht = σ(ut, ut−1, . . . , η0t, η
0
t−1, . . . , xt, xt−1 . . .)

Expectations based on H 0
t are denoted by E0∗

t [·] and expectations based on
Ht by E∗t [·].
With the relevant economic expectations given by the average expecta-

tions across agents, the economic model (4) can now be written as

xt = α+ β1 ((1− λ)E∗t [xt+1] + λE0∗
t [xt+1])

+ β0
¡
(1− λ)E∗t−1 [xt] + λE0∗

t−1 [xt]
¢
+ ut

As before, the PLM of agents with information set Ht will be given by

xt = a2 + b2xt−1 + c2ut−1 + d2η
0
t−1 + ζt

while the PLM for agents with information set H
0
t is given by

xt = a1 + b1xt−1 + e1ut + c1ut−1 + f1η
0
t + d1η

0
t−1 + ζ

0
t.
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Here ζt and ζ 0t represent zero mean disturbances that are uncorrelated with
all variables in the respective information sets. Since agents with information
set H

0
t do not know xt, they must first forecast xt to be able to forecast xt+1.

The forecast of xt depends on the current shocks ut and η0t, which implies
that these agents must estimate e1 and f1 to be able to forecast.
Agents’ expectations are now given by

E∗t [xt+1] = a2 + b2xt + c2ut + d2η
0
t

E0∗
t [xt+1] = a1 + b1E

0∗
t [xt] + c1ut + d1η

0
t

= a1 + b1
£
a1 + b1xt−1 + e1ut + c1ut−1 + f1η

0
t + d1η

0
t−1
¤
+ c1ut + d1η

0
t

= a1(1 + b1) + b21xt−1 + (b1e1 + c1)ut

+ b1c1ut−1 + (b1f1 + d1)η
0
t + b1d1η

0
t−1

and the implied ALM can be written as

zt = A+Bzt−1 + C

µ
ut
η0t

¶
(18)

where zt = (xt, xt−1, ut, ut−1, η0t, η
0
t−1) and where the expressions for A, B,

and C can be found in Appendix A.3.1.
It is important to note that the ALM is an ARMA(2,2) process and

therefore of higher order than agents’ PLM. This is due to the presence
of agents with H 0

t information. These agents use variables dated t − 2 to
forecast xt. This feature has several important implications. First, while
the T-map is given by the coefficients showing up in the ARMA(2,2)-ALM
(18), calculating the fixed points of the learning process now requires us to
project the ARMA(2,2)-ALM back onto the ARMA(1,1) parameter space.
Second, it might appear that the resulting fixed points of the T-map would
not constitute rational expectations equilibria, but rather what have been
called “restricted perceptions equilibria’ (RPE). RPE have the property that
agents’ forecasts are optimal within the class of PLMs considered by agents,
but not within a more general class of models.10

Because our agents estimate ARMA(1,1) models, and under the current
information assumptions ARMA(1,1) PLMs generate ARMA(2,2) ALMs,
there is clearly the possibility that convergence will be to an RPE that is
not an REE. However, as we will show below, convergence will be to an

10The issue of projecting a higher-order ALM back to a lower-order PLM first arose in
(Sargent 1991). Sargent’s “reduced-order” equilibrium is a particular form of RPE.
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ARMA(2,2) process that can be regarded as an overparameterized ARMA(1,1)
REE. Therefore, the misspecification by agents is transitional and disappears
asymptotically.
The projection of the ARMA(2,2)-ALM on the ARMA(1,1)-PLM is ob-

tained as follows. Under the assumption that zt is stationary equation (18)
implies

vec(var(zt)) = (I −B ⊗B)−1vec
µ
Cvar

µ
ut
η0t

¶
C 0
¶

(19)

Using the covariances in (19) one can express the least squares estimates as

T

⎛⎜⎜⎜⎜⎝
bi
ei
ci
fi
di

⎞⎟⎟⎟⎟⎠ = var

⎛⎜⎜⎜⎜⎝
xt−1
ut
ut−1
η0t
η0t−1

⎞⎟⎟⎟⎟⎠
−1

cov

⎛⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝

xt−1
ut
ut−1
η0t
η0t−1

⎞⎟⎟⎟⎟⎠ , xt

⎞⎟⎟⎟⎟⎠
The estimate for the constant is

T (ai) = (1− bi)E(xt)

= (1− bi)
A11

1− 1
1/β1−(1−λ)b2 (B11 +B12)

where A11, B11, and B12 are elements of the ALM coefficients A and B, as
given in Appendix A.3.1. This completes the projection of the ARMA(2,2)-
ALM onto the ARMA(1,1)-PLM.
Using Mathematica one can then show that the following parameters are

fixed points of the T-map:

(a1, b1, e1, c1, f1, d1, a2, b2, c2, d2)

= (−α/β1, 1/β1 − ρ, γ0, γ0ρ− 1/β1, γ1, γ1ρ,−α/β1, 1/β1 − ρ, γ0ρ− 1/β1, γ1ρ)
(20)

where

ρ =
β0
β1
, γ0, γ1 : arbitrary constants.

Note that the PLMs of agents with information set Ht and H 0
t is the

same (up to the coefficients showing up in front of the additional regressors
of H 0

t-agents). This is not surprising since agents observe the same variables
and estimate effectively the same PLMs.
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It might appear surprising that the PLM-parameters in (20) are indepen-
dent of the share λ of agents with information set H 0

t. One might expect
that the value of λ would affect the importance the second lags in the ALM
(20) and therefore influence the projection of the ARMA(2,2)-ALM onto the
PLMs. However, it can be shown that this is not true at the fixed point (20).
Calculating the ALM implied by the fixed point (20) yields:

A(L)

∙
1 + (− 1

β1
+ ρ)L

¸
xt = A(L)

∙
γ0 + (−

1

β1
+ γ0ρ)L

¸
ut (21)

+A(L) [γ1 + γ1ρL] η
0
t +A

where

A(L) =
−β1ρ− λ+ β1ρλ

β1ρ(λ− 1)− λ
+
−ρλ+ β1ρ

2λ

β1ρ(λ− 1)− λ
L

A =
α ((1 + ρ)λ− β1ρ(−1 + λ+ ρλ))

β1(β1ρ(λ− 1)− λ)
.

The ARMA(2,2)-ALM (18) has a common factor in the lag polynomials.
Canceling the common factor A(L) in (21) gives the ARMA(1,1)-REE (5).
From ρ = β0

β1
it can be seen that the resulting ARMA(1,1) process is precisely

the ARMA(1,1) REE (5).
To summarize the preceding argument, the ALM is a genuine ARMA(2,2)

process during the learning transition and this is underparameterized by the
agents estimating an ARMA(1,1). However, provided learning converges,
this misspecification becomes asymptotically negligible.
As in the case of the ARMA(1,1)-REE, E-stability of the ARMA(1,1)

fixed points are determined by the eigenvalues of the matrix

dT

d(a1, b1, e1, c1, f1, d1, a2, b2, c2, d2)
(22)

evaluated at the fixed points.
As a first application of our setting, we consider the model of (Duffy

1994), which depends on a single parameter because −β1 = β0 > 1. Using
Mathematica to derive analytical expressions for the eigenvalues of (22), one
can show that a necessary condition for E-stability is given by

λ <
(β1)

2

2 (β1)
2 − 1 . (23)
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Thus, in this model the ARMA(1,1)-REE become unstable if a high enough
share of agents does not observe current endogenous variables.
We now turn to our main application, i.e. the hyperinflation model.

6 The hyperinflation model reconsidered

As discussed in the introduction, the low inflation steady state is learnable,
and the high inflation steady state is not, under most assumptions concerning
learning. In the setup considered here, the Remark at the end of Section 4.1
yields this result with full current information since β0 + β1 < 1 and β0 < 1
at xl whereas β0 + β1 > 1 at xh.11 The contribution of the current paper
is the discovery that a class of stationary solutions near xh are stable under
least squares learning if all agents use full current information, and we now
examine the robustness of this result for different values of λ > 0.
Consider the stability of the ARMA(1,1)-REE in the hyperinflation model

when a share λ of agents has information H 0
t and the remaining agents have

full informationHt. We first examine the case of small amounts of seigniorage
ξ → 0, for which the expressions for the linearization coefficients and the
equilibrium coefficients become particularly simple. We then present some
results for the general case ξ > 0.

6.1 Small amounts of seigniorage

The linearization coefficients of the hyperinflation model for ξ → 0 are given
by

lim
ξ→0

α =
1

ω
, lim
ξ→0

β1 = +∞, lim
ξ→0

ρ =
β0
β1
= −ω.

From equation (20) it then follows that in the ARMA(1,1)-REE the coeffi-
cients are given by

(a1, b1, e1, c1, f1, d1, a2, b2, c2, d2)

= (0, ω, γ0,−γ0ω, γ1,−γ1ω, 0, ω,−γ0ω,−γ1ω).
E-stability of the ARMA(1,1)-REE is determined by the eigenvalues of

the T-map. Analytical expressions for the eigenvalues are given in Appendix
11For steady state PLMs xt = a + ut these stability results hold regardless of the

information sets of the agents. The exceptions to the stability results noted by (Van Zandt
and Lettau 2003) do not arise in our framework.
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A.3.2. Four of these eigenvalues are equal to zero. Two eigenvalues are equal
to one. The latter correspond to the eigenvectors pointing into the direction
of the arbitrary constants γ0 and γ1. The remaining four eigenvalues si
(i = 1, . . . , 4) are functions of ω and λ, and we compute numerical stability
results.

FIGURE 2 HERE

For λ values lying above the line shown in Figure 2 the ARMA(1,1) class of
REE is E-unstable. A sufficient condition for instability is λ > 1/2 (since
then s1 > 1).

6.2 The intermediate and large deficit case

Using the analytical expressions for the eigenvalues of the matrix (22) we
used numerical methods to determine the critical share λ for which the
ARMA(1,1)-REE becomes E-unstable for positive values of the deficit share
ξ. Figure 3 displays the critical λ values for ξ values of 0.2, 0.5, and 0.95,
respectively. For λ values lying above the lines shown in these figures, the
ARMA(1,1) class of REE is E-unstable. For λ values below these lines the
equilibria remain E-stable.

FIGURE 3 HERE

The figure suggests that λ > 0.5 continues to be a sufficient condition for
E-instability of the ARMA(1,1) REE. However, critical values for λ appear
generally to be smaller than 0.5, with critical values significantly lower if ω
is small and ξ is high. Moreover, when ω = 0 and ξ → 1, these equilibria
become unstable even if an arbitrarily small share of agents does not observe
the current values of xt.

6.3 Real time learning

Because formal real time learning results cannot be proved for the ARMA(1,1)
sunspot solutions, we here present simulations of the model under learning.
These indicate that the E-stability results do indeed provide the stability
conditions of this class of solutions under least-squares learning. In the il-
lustrative simulations we set β1 = 2 and β0 = −0.5 and α = 0. For these
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reduced form parameters the values of a and b at the ARMA(1,1) REE are
a = 0 and b = 0.75. For these reduced form parameters the ARMA(1,1)
REE are E-stable for λ = 0, see Figure 1, and convergent parameter paths
are indeed obtained under recursive least squares learning. The parameter
estimates for a typical simulation, shown in Figures 4 and 5, are converging
toward equilibrium values of the set of ARMA(1,1) REE.

FIGURES 4 THROUGH 7 HERE

In Figures 6 and 7 the share of agents with information set H 0
t is increased

to λ = 0.5 and the ARMA(1,1) sunspot equilibria become unstable under
learning: at, bt are clearly diverging from their ARMA(1,1) REE values.
These simulation results illustrate on the one hand the possibility of least

squares learning converging to stationary solutions near the high inflation
steady state. On the other hand these results also show that stability de-
pends sensitively on the information available to agents when their inflation
forecasts are made.

6.4 Learnable hyperinflations and stylized facts

A variety of stylized facts about hyperinflations have been noted in the lit-
erature. (Marcet and Nicolini 2003) list a low correlation between seignior-
age revenues and inflation during a hyperinflation, recurrence of inflationary
episodes within countries subject to them, and a high cross-country correla-
tion between average inflation and seigniorage.
The most straightforward issue to consider within our model is the de-

gree of correlation between seigniorage and inflation in the high-inflation
equilibria of the type that can be stable under learning. Consider first the
continuum of stationary “intrinsic nonfundamental equilibria” of the form
(8). It is straightforward to compute the correlation between inflation xt and
the seigniorage shock ut:

Corr(xt, ut) = sgn(γ0)

r
1− c2

1 +m2 + 2cm
, where c =

1− β0
β1

, m =
β0 − γ−10

β1
.

Recalling that γ0 can have any value, we can calculate numerically how the
magnitude of γ0 affects Corr(xt, ut). As an illustration we consider a monthly
model with the high inflation steady state given by xh = 4. A monthly
inflation rate of 300% is only slightly larger than the maximum inflation
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rates observed during various hyperinflations taking place in the 1980’s in
Argentina, Bolivia, and Peru, see (Marcet and Nicolini 2003). We set the
elasticity of money demand with respect to inflation equal to β0 = −1. The
values for β1 and α follow from equation (24) in Appendix A.1 and the steady
state version of equation (4), respectively.

γ0 −0.5 −0.2 −0.1 −0.05 0 0.05 0.1 0.2 0.5
Corr −0.76 −0.5 −0.3 −0.16 0 0.18 0.36 0.65 0.96

Table 1: Correlation between seigniorage and inflation

As illustrated in Table 1, any value of Corr(xt, ut) can occur, depending
on which member of the set of learnable equilibria (8) obtains, as specified
by the value of γ0. Under learning, the value of γ0 arises as an outcome of
the learning process and is affected by the initial prior and the sequence of
random shocks during the learning transition. For the more general class (5)
of ARMA(1,1) solutions that also depend on uncorrelated sunspots η0t, the
magnitude of the correlation between xt and ut would be lower for each value
of γ0 than specified in the table.

12 Based on these results, it would therefore
not be surprising to find that there is little systematic correlation between
inflation and seigniorage in the data.
Recalling our various stability results, we see that there is the potential to

have two distinct sets of learnable equilibria, namely xl and, if λ is sufficiently
low, the ARMA(1,1) solutions near xh. This suggests that there may be ways
to use these results to explain both recurrence of hyperinflations and high
cross-country correlation between seigniorage and inflation. First, a higher
mean level of seigniorage shrinks the domain of attraction of xl under steady
state learning. This suggests the possibility that solutions near xh are more
likely with high levels of mean seigniorage. Second, in our model we have
taken λ as given, but a natural extension would make λ dependent on the
level of inflation since higher inflation would provide an incentive to acquire
contemporaneous information on inflation. Since a higher level of seigniorage
increases xl, this suggests an increased susceptibility to learning dynamics
converging to the set of REE near xh. To explain recurrence of periods of low

12Furthermore, simulations suggests that, for rational ARMA hyperinflation paths that
start near xl, the correlation between inflation and seigniorage is diminished during the
transition.
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and high inflation, one could invoke changes in policy at high rates of inflation
as in (Marcet and Nicolini 2003). Alternatively, the reversion from high to
low inflation might arise endogenously under constant gain learning.13 The
possibility of stable high inflation equilibria would yield different implications
from the model of (Marcet and Nicolini 2003) if the policy regime remained
unchanged. A more specific model of recurrent hyperinflations along these
lines is left for future research.

7 Conclusions

In this paper we have studied the plausibility of stationary hyperinflation
paths in the monetary inflation model by analyzing their stability under
adaptive learning. The analysis has been conducted using a reduced form
that has wider applicability. For the hyperinflation model, if agents can ob-
serve current endogenous variables at the time of forecasting then stationary
hyperinflation paths of the AR(1) and ARMA(1,1) form, as well as asso-
ciated sunspot solutions, are stable under learning. Although this suggests
that these equilibria may provide a plausible explanation of hyperinflationary
episodes, the finding is not robust to changes in agents’ information set. In
particular, if a significant share of agents cannot observe current endogenous
variables when forming expectations, the stationary hyperinflation paths be-
come unstable under learning.
On the other hand, the finding that the set of hyperinflationary equilibria

is learnable when a sufficient number of agents have full contemporaneous
information is new and - as suggested at the end of Section 6.4 - an extended
version of the model could provide an alternative account for hyperinflations.

13The possibility of endogenously switching between two learnable equilibria under con-
stant gain learning has been studied e.g. in Chapter 14 of (Evans and Honkapohja 2001)
in a different model.
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A Appendices: Technical Details

A.1 Linearization of hyperinflation model

Equation (3), which specifies the steady states, can be rewritten as

x2 − ψ1 + ψ0 − g

ψ1
x+

ψ0
ψ1
= 0,

from which it follows that the two solutions xl < xh satisfy xlxh = ψ0/ψ1
and hence that

xl <

s
ψ0
ψ1

< xh.

Linearizing (2) at a steady state x yields xt = α+β1E
∗
t xt+1+β0E

∗
t−1xt+ut,

where

β0 = −
ψ1x

ψ0 − ψ1x
and β1 =

ψ1x
2

ψ0 − ψ1x
. (24)

Note that β1 > 0 and β0 < 0. We remark that −β0 is the elasticity of real
money demand with respect to inflation and that β1 = −β0x.
For the linearized model the AR(1) or ARMA(1,1) solutions of the form

(5) are stationary if and only if the autoregressive parameter β−11 (1−β0) > 0
is smaller than one. Since

β−11 (1− β0) =
ψ0
ψ1x

2
,

it follows that the solutions (5) are stationary near the high inflation steady
state xh, but explosive near the low inflation steady state xl.

A.2 Proof of Proposition 2

We start by defining yt−1 = (1, xt−2)0. With this notation we write the
updating for the matrix of second moments as

Rt = Rt−1 + ϑt(yt−1y0t−1 −Rt−1)

and make a timing change St = Rt+1 in order to write recursive least squares
(RLS) estimation as a stochastic recursive algorithm (SRA). In terms of St
we have

St = St−1 + ϑt

µ
ϑt+1
ϑt

¶
(yty

0
t − St−1) (25)
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and
St−1 = St−2 + ϑt(yt−1y0t−1 − St−2) (26)

for the periods t and t − 1. For updating of the estimates of the PLM
parameters we have (17), which is rewritten in terms of St−1 asµ

at
bt

¶
=

µ
at−1
bt−1

¶
+ ϑtS

−1
t−1(xt−1 − at−1 − bt−1xt−2)

µ
1

xt−2

¶
(27)

andµ
at−1
bt−1

¶
=

µ
at−2
bt−2

¶
+ ϑt

µ
ϑt−1
ϑt

¶
S−1t−2(xt−2 − at−2 − bt−2xt−3)

µ
1

xt−3

¶
.

(28)
To write the entire system as a SRA we next define κt = (at, bt, at−1, bt−1)

0

and

φt =

⎛⎝ κt
vecSt
vecSt−1

⎞⎠ and Xt =

⎛⎜⎜⎝
xt−1
xt−2
xt−3
1

⎞⎟⎟⎠ .

With this notation the equations for parameter updating are in the standard
form

φt = φt−1 + ϑtQ(t, φt−1,Xt), (29)

where the function Q(t, φt−1,Xt) is defined by (25), (26), (27) and (28). We
also write (16) in terms of general functional notation as

xt = xa(φt) + xb(φt)xt−1 + xu(φt)ut.

For the state vector Xt we have⎛⎜⎜⎝
xt−1
xt−2
xt−3
1

⎞⎟⎟⎠ =

⎛⎜⎜⎝
xb(φt−1) 0 0 0
1 0 0 0
0 1 0 0
0 0 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝

xt−2
xt−3
xt−4
1

⎞⎟⎟⎠

+

⎛⎜⎜⎝
xa(φt−1) xu(φt−1)

0 0
0 0
1 0

⎞⎟⎟⎠µ 1
ut−1

¶
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or
Xt = A(φt−1)Xt−1 +B(φt−1)υt, (30)

where υt = (1, ut−1)0.
The system (29) and (30) is a standard form for SRAs. Chapters 6

and 7 of (Evans and Honkapohja 2001) discuss the techniques for analyzing
the convergence of SRAs. The convergence points and the conditions for
convergence of dynamics generated by SRAs can be analyzed in terms of an
associated ordinary differential equation (ODE). The SRA dynamics converge
to an equilibrium point φ∗ when φ∗ is locally asymptotically fixed point of
the associated differential equation. We now derive the associated ODE for
our model.
For a fixed value of φ the state dynamics are essentially driven by the

equation
xt−1(φ) = xa(φ) + xb(φ)xt−2 + xu(φ)ut−1.

Now

Eyty
0
t =

µ
1 Ext(φ)

Ext(φ) Ext(φ)
2

¶
≡M(φ).

Defining �t−1(φ) = xt−1 − a− bxt−2 we compute

�t−1(φ) = (xa(φ)− a) + (xb(φ)− b)xt−2(φ) + xu(φ)υt,

so that

E�t−1(φ)
µ

1
xt−2(φ)

¶
=M(φ)

µ
xa(φ)− a
xb(φ)− b

¶
.

These results yield the associated ODE as

d

dτ

µ
a
b

¶
= S−1M(φ)

µ
xa(φ)− a
xb(φ)− b

¶
dS

dτ
=M(φ)− S

d

dτ

µ
a1
b1

¶
= S−11 M(φ)

µ
xa(φ)− a1
xb(φ)− b1

¶
dS1
dτ

=M(φ)− S1,

where the temporary notation of variables with/without the subscript 1 refers
to the t and t− 1 dating in the system (25), (26), (27) and (28).
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A variant of the standard argument shows that stability of the ODE is
controlled by the stability of the small ODE

d

dτ

⎛⎜⎜⎝
a
b
a1
b1

⎞⎟⎟⎠ =

⎛⎜⎜⎝
xa(φ)− a
xb(φ)− b
xa(φ)− a1
xb(φ)− b1

⎞⎟⎟⎠ . (31)

Next we linearize the small ODE at the fixed point a = a1 = a∗ ≡ −β−11 α,
b = b1 = b∗ ≡ β−11 (1− β0). The derivative of (31) at the fixed point can be
written as DX − I, where

DX =

⎛⎜⎜⎝
β−10 β1 −β−10 β1 1 0
0 β−10 − 1 0 1

β−10 β1 −β−10 β1 1 0
0 β−10 − 1 0 1

⎞⎟⎟⎠ .

The eigenvalues of DX are clearly zero and the remaining two roots are
1 + β−10 β1 and β−10 . The local stability condition for the small ODE and
hence the condition for local convergence the RLS learning as given in the
statement of Proposition 2.

A.3 Details on the Model with a Mixture of Agents

A.3.1 The ALM when some agents do not observe current states

The coefficients in the ALM (18) are

A0 =
¡
ς(α/β1 + (1 + ρ)[λ(1 + b1)a1 + (1− λ)a2]) 0 0 0 0 0 0

¢

B =

⎛⎜⎜⎜⎜⎜⎜⎝
ςB11 ςB12 ςB13 ςB14 ςB15 ςB16
ς 0 0 0 0 0
0 0 0 0 0 0
0 0 ς 0 0 0
0 0 0 0 0 0
0 0 0 0 ς 0

⎞⎟⎟⎟⎟⎟⎟⎠
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C =

⎛⎜⎜⎜⎜⎜⎜⎝
ς(λ(b1e1 + c1) + (1− λ)c2 + 1/β1) ς(λ(b1f1 + d1) + (1− λ)d2)

0 0
0 0
0 0
0 0
0 0

⎞⎟⎟⎟⎟⎟⎟⎠
where ς = (1/β1 − (1− λ)b2)

−1 and

B11 = λb21 + ρ(1− λ)b2

B12 = ρλb21
B13 = λb1c1 + ρ(λ(b1e1 + c1) + (1− λ)c2)

B14 = ρλb1c1

B15 = λb1d1 + ρ(λ(b1f1 + d1) + (1− λ)d2)

B16 = ρλb1d1

A.3.2 Eigenvalues in the small deficit case

For the hyperinflation model with a mixture of agents, the eigenvalues of the
derivative of the T-map at the ARMA(1,1)-solution near the high-inflation
steady state, for small deficit values (i.e. as ξ → 0), are given by

s1 =
λ2

(1− λ)2

s2 =
(1 + ρ)(−1 + ρλ)

ρ(−1 + λ+ ρλ)

s3 = −2ρ
3(−1 + λ)λ2 + ρ5(λ2 − 2λ3) +√s
2ρ3(−1 + λ)2(1 + (−1 + ρ2)λ)

s4 =
2ρ3(−1 + λ)λ2 + ρ5(λ2 − 2λ3) +√s
2ρ3(−1 + λ)2(1 + (−1 + ρ2)λ)

s5 = s6 = 1

s7 = s8 = s9 = s10 = 0

where

s = ρ6λ2(4(−1 + λ)2 + ρ4λ(−4 + 5λ)− 4ρ2(1− 3λ+ 2λ2))
and ρ = −ω.
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Figure 1: Regions of E-Stable ARMA equilibria
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Figure 2: Critical value of λ, small deficit case (ξ →0)
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Figure 3: Critical value of λ, intermediate and large deficit case
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Figure 4: Example of convergence when λ = 0
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Figure 5: Example of convergence when λ = 0
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Figure 6: Example of divergence when λ = 0.5
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Figure 7: Example of divergence when λ = 0.5
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